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1. Introduction

The goal of Guided Self-Organization (GSO) is to leverage the strengths of self-

organization while still being able to direct the outcome of the self-organizing

process. GSO typically has the following features: (i) an increase in organization

(structure and/or functionality) over some time; (ii) the local interactions are not

explicitly guided by any external agent; and (iii) task-independent objectives are

combined with task-dependent constraints. Over the last few years a mathematical

framework has started to form around these features, promising to provide com-

mon organizational and guidance principles across multiple scales and contexts. This

process is far from being complete, and every year an International GSO Workshop

showcases new breakthroughs that diversify and reshape the field. Nevertheless,

some themes and ideas withstand the test of time, maintaining the core of the GSO

research.

One of these themes is the role of information (understood as Shannon infor-

mation, i.e. “reduction in uncertainty”) in guiding a self-organizing process. In par-

ticular, a lot of progress has been achieved in studying various aspects of infor-

mation structure and information processing during self-organization of behavior
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(molecular, neural, cognitive, social, etc.). For example, several principles based on

information flows through the perception-action loops of embodied cognitive sys-

tems were recently developed [5]. These principles related GSO to the notion that

adaptive behaviors emerge from interactions between brain, body, and environment

while optimizing task-independent objective functions.

Having a language that describes interactions is essential for a non-reduction-

ist science [14]. And so another common GSO trend is the use of graph theory in

representing and analyzing interactions within a system, be it a cell, the brain, a

social network, an ecological web, or a power grid. Several graph-theoretical mea-

sures have been devised and put to use in tracing various self-organization processes

developing within networks, as well as in relating connectivity of the self-organizing

systems to their function [29, 13].

This topical issue presents a selection of papers following two GSO Workshops

(Bloomington, Indiana, USA, in 2010 and Hertfordshire, UK, in 2011). These papers

are grouped into three sections. The first section contains three studies character-

izing neural dynamics with model-free techniques. It is followed by a section on

embodied (e.g., robotic) systems, consisting of five papers. These works investigate

various control loops and goal-oriented behavior, shaped by specific organizational

principles and constraints, such as information bottleneck, homeokinesis, empow-

erment, maximization of transfer entropy, etc. The concluding section broadens

the scale of self-organization, extending to collective behavior of multi-agent sys-

tems. It also comprises five papers, dealing with bio-inspired algorithms, pattern

formation, and social dilemmas, and offering several efficient mechanisms for guided

self-organization.

2. Neural dynamics and model-free methods

The first section of the topical issue is devoted to studies of neural dynamics with

model-free methods. Self-organization within a neural system is typically brought

about by neuronal interactions, potentially resulting in neural plasticity and learn-

ing. Modelling and analyzing these interactions is a daunting task which remains a

research challenge. For instance, Chicharro and Ledberg [10] studied the brain as a

biological system consisting of multiple interacting components, showing that the

influence of causal connections on the natural dynamics of the system often cannot

be analyzed in terms of the causal effect of one subsystem on another.

One emerging trend bypassing this challenge suggests the use of model-free

techniques that quantify directed interactions within the brain [37, 18, 36]. Some

of these techniques take advantage of the generic nature of information-theoretic

methods. For example, Wibral et al. [37] analyzed magnetoencephalography (MEG)

source-level signals using transfer entropy, successfully detecting changes in cortical

and subcortical networks between the different auditory task types.

The papers assembled in this section take the next step. The model-free tech-

niques are not only used here to quantify the strength of interactions and/or detect



June 3, 2013 19:20 WSPC/INSTRUCTION FILE Editorial

Instructions for Typing Manuscripts (Paper’s Title) 3

specific pathways, but also form a basis for generic organizational principles that

govern and guide the self-organization process at different scales.

The paper “Metabolic cost as an orginizing principle for cooperative learning” by

Balduzzi et al. studies how neurons can use metabolic cost to facilitate learning at

a population level. The investigation is focussed on self-organization as an internal

process to the neural system, and so one may consider neurons as explicit commu-

nication channels mapping situations to actions (using spiketrains). In addition, the

general inability of individual neurons to significantly manipulate their environment

simplifies the optimization problems. Specifically, the paper shows that constraining

reward maximization by metabolic cost forces neurons to maximize the information

they encode into their spikes, aligning the information content of actions with their

expected reward. The main conclusion is that “information aligns with rewards”,

and that metabolic cost may provide an organizing principle underlying the neural

code. Moreover, one important ramification is that spikes with high information

content are worth learning from, and so the suggested organizing principle may be

extended to studies of neuronal learning, as well as to analysis and design of other

cooperating populations.

The multi-scale relevance of generic organizational principles is a recurring

theme in many papers of this topical issue. The paper by Yaeger “Identifying neu-

ral network topologies that foster dynamical complexity” links (in fact, correlates)

neural complexity with behavioral complexity. The investigation is concerned with

behavioral adaptation and an evolutionary selection for complexity, putting forward

the question whether evolution selects for complex dynamics and specific network

topologies, e.g. small-world networks. It has recently been demonstrated by Lizier et

al. [19] that small-world networks are capable of maintaining and balancing compa-

rably large information storage and information transfer. Not surprisingly, the pa-

per quantifies the complexity of neural dynamics using information theory as well.

Specifically, TSE complexity [32], is used, capturing the dual and opposing tensions

towards global coordination and cooperation (“integration”) and localized special-

ization of functionality (“segregation”). Furthermore, neural dynamics are related

to several graph-theoretical measures calculated for the underlying network topolo-

gies. While the study is carried out within a simulated system of Polyworld, the

resulting conclusion is far-reaching: “functional and structural evolutionary pres-

sures cooperate to produce brains optimized for adaptation to a complex, variable

world”.

The paper “Combining Correlation-Based and Reward-Based Learning in Neu-

ral Control for Policy Improvement” by Manoonpong et al. concludes our first sec-

tion dedicated to self-organizing neural systems. In this paper the guidance of the

learning strategy is achieved by a combination of correlation-based learning and

reinforcement learning. The first approach uses the correlations between external

stimuli and anticipatory actions, and typically learns simple tasks quickly. The sec-

ond approach uses predefined rewards / punishments as evaluations allowing an

agent to optimize its expected future rewards, and in general is slower but more
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successful in solving complicated tasks. The combined learning model introduced

here is shown to strongly improve performance of the controller. Interestingly, the

learning rules do not require an explicit model of the environment, and so the pre-

sented approach is still a model-free method, in line with other techniques for guided

self-organization described in this topical issue.

3. Embodiment, Robotics, and Control

Neural systems are distinguished by the fact that they operate in an environment

where their counterparts communicate (and aim to communicate) with them: in

other words, the self-organization in a neural system is “in the interest” of every

participating entity (neurons) which cooperate in making the communication codes

“jointly” understood. As one proceeds to agents operating in an external environ-

ment, this ceases to be true. In fact, the environment is not an agent and has no

“intention” to communicate with the agents living in it [?] ]gibson-ecological.

Even so, the environment influences the agent and the agent, in turn, influences

the environment and thus the state of the agent and the state of the environment will

be correlated. In the biological realm, evolutionary pressures will push the biological

agents to modify the environment and their interaction with it to a state of selective

advantage of the agents. This means that the structure of the environment will be

reflected in how the agent interacts with it, and one can expect the agent’s cognitive

control to encompass some characteristics of the world it inhabits. The “code word”

embodiment has been used for a while to describe how the agent’s internal decisions

translate into actual behavior in the world; and while in the past, rule-based and

symbolic views have been adopted in which a platonic cognitive unit “hovers over

the robotic reality” to select optimal behaviors [38, 21], it has become clear that

this approach is doomed to fail, as it has to take into account all potential cases

and exceptions, which is unrealistic except in the simplest of worlds.

In response to this, Brooks [9] proposed an inherently opposed approach which

considers a non-symbolic, non-representational cognitive approach to control prob-

lems. In fact, such approaches had been explored in early cybernetics [2, 3, 34] then

all but forgotten in the wake of the quick growth of the successes of the von Neumann

architecture. Yet, it was well understood that even extremely simple principles could

produce a variety of complex and “sensible” behaviors [7]. For the extraordinary

success of these simple cognitive architectures, a core importance was attributed to

embodiment, i.e. to how an agent is embedded in its physical environment. Paul

[23], Pfeifer and Bongard [24], and Hoffmann and Pfeifer [15] utilized the term

morphological computation to emphasize that the embedding into the environment

participates in the cognitive process. In nature this embedding will be the product

of evolutionary adaptation; in an artificial system it may be the result of a suitable

design. But it makes clear that the structure of the embodiment plays an important

role in producing useful behaviors. In fact, for simple examples, seemingly trivial

properties of the embodiment can contribute to drastically different cognitive load



June 3, 2013 19:20 WSPC/INSTRUCTION FILE Editorial

Instructions for Typing Manuscripts (Paper’s Title) 5

on the agent itself. For example, in a simple gridworld, randomly relabeling actions

individually per state instead of keeping globally consistent direction labels (i.e.

global north, east, south, west labels) makes policies of equivalent performance cog-

nitively much more expensive (measured using information theory) [26]. In terms of

traditional, “platonic” Artificial Intelligence, both scenarios are completely equiva-

lent and can be transformed into each other by a simple permutation of the actions.

However, the embodiment perspective makes clear that this relabeling of actions,

while in principle abstractly possible, is costly. The success of agents embodied in a

real world depends on this embodiment being “naturally” supportive of the agent’s

task.

In typical studies, the embodiment is either a product of natural evolution

(where it is taken for granted in advance) or the result of an engineering process

(where it is designed into the agent on purpose). However, its acquisition and direct

role in shaping cognition is comparatively rarely the direct object of study. It is to

fill this gap that many of the papers of this section contribute.

The paper “Robustness of guided self-organization against sensorimotor dis-

ruptions” by Georg Martius takes one of the pioneer approaches to self-organized

behavior generation for agents and robots — homeokinesis — to a new level. Home-

okinesis was introduced by Der et al. [12, 11] as an intrinsic motivation model which

operates on the assumption that an agent will try to adopt behaviors which will

make its future as predictable for it as possible, while at the same time allowing for

a rich set of future options. An information-theoretic generalization of the approach

has used predictive information [6, 4] to the same effect. Homeokinesis is a purely

self-organized approach, but has seen extension towards incorporating goal-directed

behaviors [20] by incorporating preferences for preferred modes of behavior of the

self-organizing system.

The new paper by Martius now extends the existing homeokinetic approach by

taking into account not just proximity sensors (such as contact sensors), but now

also distal sensors, namely in the form of vision sensors. The basic coordination

and task (ball pushing), including vision sensors, are learnt in the self-organizing

homeokinesis process in a short time. Their work now studies the advantages of the

guided self-organizing system in the given configuration with respect to a purely

self-organized or purely guided system. The combined system is able to handle

massive sensoric reconfigurations rapidly and with good reliability. Turning off the

self-organization part while keeping the “guided” component active, an agent loses

its ability to explore and is less flexible when it comes to extricating itself from

difficult situations, such as escaping from corners. Pure self-organization without

control, on the other hand, tends to lose focus and sight of the goal behavior. The

combination of guidance and self-organization provides a prime example for the

strengths of each of the contributions and the power that the combined approach

can offer.

The paper “A Goal-Orientation Framework for Self-Organizing Control” by

Hesse and Wörgötter consider again homeokinesis as a generator for low level
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controls. However, their approach consists of separating and layering the low-level

self-organizational behaviors and the high-level goal-directed behaviors. Thus the

high-level behaviors make use of the adapted homeokinetic low-level behaviors for

their optimization. The resulting high-level behaviors will thus not be perfectly op-

timal, as the robustness of the low-level behaviors comes at a price. However, the

combination provides a significant increase in flexibility. The high-level controller

has the choice of presetting the scenarios (such as a fixed hand opening which is

externally imposed at the beginning of a ball-gripping experiment), or defining the

basic movement patterns. The paper emphasizes a strict separation of goals and

self-organization for the purpose of clarifying which level is responsible for which

part of the behavior. This also provides an interface for potential extensions of one

level independently of the other.

The relation between goal-directed learning and the sometimes surprising suc-

cess of self-organizing behavior generation has been quite in the dark. While tradi-

tional AI considers mostly goal-directed learning, much of its “intelligent” achieve-

ments can already be addressed by self-organizing approaches. The paper “Infor-

mational Constraints-Driven Organization in Goal-Directed Behavior” by van Dijk

and Polani takes some steps to understand why that could be the case. It considers

an informational picture of cognitive processing in which constraints on Shannon

information determine what preferred behaviors will look like in a given environ-

ment. For this purpose, it is assumed that agents have a limited goal-related working

memory. Transition points in the task (such as doors) will lead to a “re-caching”

of goal information; these transition points are prime candidates to be used as sub-

goals, but emerge entirely from the necessity to limit working memory intake. The

goal-information perspective also provides an approach to producing a natural clas-

sification of the environment into different rooms, without having an explicit con-

cept of “rooms”. Another variant produced clusters of locations in the world which

would be neighbouring if not for the walls between them — a “spillover” map that

ignores the incidental local walls and rather respects the global neighbourhoods of

the world. These outcomes indicate that there is already significant prior structure

in the world which well-designed self-organizing methods can successfully exploit to

great effect.

A special case of environment structure is the dynamics of the perception-action

loop of an agent. Many approaches, including homeokinesis, use this loop. Another

intrinsic motivation model is empowerment, which considers the channel capacity

of the external perception-action loop; i.e., the potential perceivable change that

an agent can reliably effect on its environment, measured in terms of information

theory. Empowerment has been studied in a number of scenarios [16], but its compu-

tation beyond small discrete cases is computationally expensive. While for discrete

worlds useful approximations and extensions have been developed [1], the extension

to the continuous domain has remained difficult. The paper “Approximation of

Empowerment in the Continuous Domain” by Salge et al. introduces a quasi-linear

Gaussian framework which takes advantage of the fact that often perception-action
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dynamics can be considered locally Gaussian. The authors apply the framework

to an inverse pendulum problem where, although the approximated empowerment

landscape differs from the more accurate one, the induced dynamics is very similar.

Thus, the quasilinear Gaussian approximation promises to be a practically viable

approach to compute empowerment in an efficient way.

“Bootstrapping Perception Using Information Theory: Case Studies in a

Quadruped Robot Running on Different Grounds” by Schmidt et al. explores the

sensorimotor structure of an embodied hardware robot which exhibits a number of

self-organized gaits driven by the interaction with the ground, the “Puppy” robot.

The authors use transfer entropy-based measures to characterize the sensoric and

motoric variables of the Puppy robot. The transfer entropy is being used to capture

the temporal (however, not causal) and interconnectedness of the various sensors

and actuators in a time-relevant manner. The analysis is able to identify “easier”

and “harder” ways to accomplish certain desired behaviors by quantifying how cer-

tain desired aspects of the movement (acceleration or turning) are affected by other

dynamics of the system. Also externalities, such as a change of the ground and its

properties, can be identified. Importantly, only the agent’s own sensors are used,

and thus all results of the analysis can be directly considered as knowledge avail-

able to the agent. In a similar vein to Olsson et al. [22], sensoritopic maps are

constructed, this time, however, based on the transfer-entropy characteristics of the

system. The information-theoretic analysis reveals a number of salient points: not

only are many aspects of the robot dynamics reflected in the informational sig-

nature of the system, but it also shows a blurred boundary between proprio- and

exteroreceptive sensors. For instance, whereas in traditional views, the knee angular

receptors would be classified as pure proprioreceptive sensors, in the present work

the dependence of their status on externalities (such as orientation and ground

properties), as revealed by the informational analysis, places the classification of

this sensor into a gray zone between proprio- and exteroreceptive sensors. Thus,

the informational analysis provides a deeper insight into the dynamics of the agent.

4. Bio-inspired collective systems

As we increase the scale of self-organizing systems, we turn our attention to col-

lective phenomena brought about by interactions of individual components of the

systems. Again, the theme of information often takes the central stage, underlying

different phases of dynamics observed during self-organizing processes, and suggest-

ing generic organizational principles behind complex collective behavior. It is worth

pointing out that the role of information-theoretic characterizations is not just in

providing a common unifying language for an analysis of various systems across

scales, but also in pinpointing and/or predicting specific features of collective dy-

namics. For instance, collective memory and information cascades in swarms were

recently quantified by Wang et al. [35] via information theoretic measures, relat-

ing these features to self-organization within the swarm. Another example is given
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by the study of the collective behaviour and its dynamics in the context of self-

organized path formation in a swarm of robots [31], which introduced and verified

a measure based on information entropy.

Often self-organizing phenomena are investigated with network models, and

in this case one may need to inter-relate information-theoretic and graph-theo-

retic analyses. For example, the prevalence of particular motifs (directed feedback

and feedforward loops) in biological and artificial networks was recently explained

via their role in contributing to local information storage, measured information-

theoretically and correlated with clustering coefficient(s) [17]. This inter-relationship

between graph theory and information theory goes beyond a purely methodologi-

cal gain: as noted by Rosvall and Bergstrom [28], “if we want to understand how

network structure relates to system behavior, we need to understand the flow of

information on the network”.

Once generic organizational principles, supported by reliable measures, are in

place, one may contemplate the task of designing or synthesizing a desirable col-

lective behavior, while balancing the expected degrees of robustness, flexibility and

scalability. This task may, for example, be carried out with evolutionary robotics

techniques [33].

The studies presented in this section are also strongly motivated by their bio-

logical analogies, where collective communications and information processing give

rise to intricate patterns and functions at a global level.

The paper “Self-organizing particle systems” by Harder and Polani attempts to

discover general information-processing principles underlying one of the most en-

tangled and perplexing processes: self-organization of cells into a living organism. In

doing so, the study considers a system of interacting particles that roughly mimic

biological cells by exhibiting differential adhesion behavior. Curiously, it shows that

particles can self-organize without the emergence of pattern-like structures, high-

lighting once more the difference between self-organization and emergence [30, 27].

Nevertheless, the main conclusion is that regular pattern-like structures do help

to overcome limitations of self-organization that are imposed by spatial structure

of interactions. In this paper, self-organization is measured via multi-information

which is capable of detecting long-range correlations among interacting particles,

and distinguish between qualitatively different phases of the self-organization pro-

cess.

The paper “Bio-development of motorway networks in the Netherlands: A slime

mould approach” by Adamatzky et al. stands out in its bold attempt to utilize

the foraging behavior of a real biological organism, Physarum polycephalum, in

constructing networks that resemble dense motorway networks in Europe. This

study not only provides a striking example of similarities between vastly different

scales (bio-development is carried out by a plasmodium of acellular slime mould,

while transport networks emerge as a result of diverse social, economic, political and

other factors), it also highlights the use of generic graph-theoretic measures, such as

Harare index and Randić index, in the analysis of complex self-organizing topologies,
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e.g. relative neighborhood graphs, β-skeletons, minimum spanning trees, etc. Using

these methods the authors are able to demonstrate the discovery of different graph

classes by the slime mould growth dynamics.

This theme is continued in the paper “An Ant-Based Algorithm with Local Op-

timization for Community Detection in Large-Scale Networks” by He et al. Com-

munity structure appears when some network nodes cluster into groups with a high

density of intra-cluster edges and a relatively lower density of inter-cluster edges.

The method proposed to detect such structures is based on local optimization of

modularity using ant-based algorithms. In general, the search for the partition with

maximal modularity has been shown to be an NP-complete problem [8]. The bio-

inspired algorithm described in this paper has a low computational complexity but

still identifies high-quality community division. Interestingly, as network hetero-

geneity is increased, the method needs adjustments in order to keep up with perfor-

mance of Infomap, a method that traces information flows in discovering a modular

organization [28]. Infomap identifies a well connected module as a group of nodes

among which information flows quickly and easily. The adjustment discussed in

the paper (a weighting scheme that better discriminates between inter-cluster and

intra-cluster edges) highlights an important difference between the specific topo-

logical approximation and the generic organizational principle underlying Infomap

(that is, modularity is maximized when information flow is maximized). The more

comprehensive performance of Infomap for heterogeneous networks may, of course,

be traded off against computational complexity of distributed algorithms.

Kitto and Boschetti consider even a higher scale of collective phenomena in their

paper “Attitudes, Ideologies and Self-Organization: Information Load Minimization

in Multi-Agent Decision Making”: social behavior and formation of ideologies. They

propose a model of human decision making in which attitudes of individual agents

self-organize into ideologies. Moreover, the formed ideologies further guide agent-

based attitude changes. The paper reports a number of interesting observations,

including a tendency to minimize the entropy in the system that quantifies and ag-

gregates agents’ levels of cognitive dissonance. The study argues that a considerable

re-organization in the system can be attained by a single external act of ideological

guidance: “rather than having to convince several tens of agents to shift their local

framing of an issue, all that was needed was to change the ideology that they sub-

scribe to”. Importantly, this action requires a smaller information processing effort

whenever the system is organized. Thus, we again see a dependency between levels

of a system’s (self-)organization and the extent of its information dynamics.

This topical issue is concluded with the paper “Preferential opponent selection

in public goods games” by Brede, in which the subject of social behavior is revis-

ited. The paper begins with the definition: “Altruism describes individual behaviour

that benefits the group, but comes at a cost to the individual”, and proceeds to

rigorously model the emergence of cooperation in evolutionary social dilemmas.

The main result is the observation that a preference to play with successful oppo-

nents strongly enhances the prevalence of cooperation. This result is complemented
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with a mechanism for the emergence of opponent selection biases. As with many

other papers in this section, the analysis is carried out on networks, revealing some

thought-provoking effects. For example, network heterogeneity is shown to boost

cooperation. This effect “results from the superior ability of hub nodes to generate

payoff and spread their strategy to adjacent nodes”, while “a defector hub would

undermine its position by surrounding itself by defectors”. Assortative mixing of

network nodes (i.e., their preference to connect with similar nodes) has been pre-

viously shown to be strongly related to information content [25], and so the effect

of network heterogeneity reported by Brede can also be interpreted as an effect of

information structure on the mechanism of (social) interactions.

5. Conclusion

This topical issue presents a range of studies, at increasing scales: starting with

self-organization of neural dynamics within the brain, moving to generation of co-

ordinated and goal-oriented behavior of embodied agents, and culminating in col-

lective, multi-agent, behavior inspired by distributed biological and social systems.

Almost all these works were unified by the use of model-free and task-independent

objectives, motivated and supported by organizational / optimization principles.

The principles in turn are unified by a common language provided by information

theory and graph theory. In particular, it is interesting to observe how informa-

tion dynamics were utilized to capture important dependencies and processes in

seemingly unrelated areas: from neuronal interactions to cellular aggregation to

perception-action loops to formation of ideologies. In addition, it was revealing to

see a significant overlap in topological features that were shown to be critical for self-

organization of behavior in small-world, modular, heterogeneous and other types of

networks.

The emergence of unifying generic principles is the main goal and achievement

of GSO research over the last several years. We hope that the papers presented in

this topical issue will inspire further progress in this field.

6. Acknowledgments

We would especially like to thank the anonymous reviewers for this topical issue

for their timely responses and useful comments. We also appreciate the professional

effort of all contributing authors. Finally, we are grateful for the support provided

by the organizers of GSO-2010 at Indiana University and GSO-2011 at the Univer-

sity of Hertfordshire and CSIRO Complex Systems Science team. GSO 2011 was

partly supported by the European Commission as part of the CORBYS (Cognitive

Control Framework for Robotic Systems) project under contract FP7 ICT-270219.

The views expressed in this Topical Issue are those of its editors and authors, and

not necessarily those of the consortium.



June 3, 2013 19:20 WSPC/INSTRUCTION FILE Editorial

Instructions for Typing Manuscripts (Paper’s Title) 11

References

[1] Anthony, T., Polani, D., and Nehaniv, C., Impoverished empowerment: ‘meaning-
ful’ action sequence generation through bandwidth limitation, in Advances in Arti-
ficial Life. Darwin Meets von Neumann - 10th European Conference, ECAL 2009,
Budapest, Hungary, September 13-16, 2009, Revised Selected Papers, Part II, eds.
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